# inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Rachid Ouarsal,<sup>a</sup> Mohammed Lachkar,<sup>a</sup> Michael Bolte<sup>b</sup> and Brahim El Bali<sup>a</sup>\*

<sup>a</sup>Départment de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fés, Morocco, and <sup>b</sup>Institut für Organische Chemie, J.-W.-Goethe-Universität, Marie-Curie-Straße 11, D-60439 Frankfurt/Main, Germany

Correspondence e-mail: belbali@fsdmfes.ac.ma

#### Key indicators

Single-crystal X-ray study T = 173 K Mean  $\sigma$ (O–N) = 0.003 Å R factor = 0.020 wR factor = 0.043 Data-to-parameter ratio = 27.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

# Trirubidium cobalt tetrachloride nitrate(V), Rb<sub>3</sub>CoCl<sub>4</sub>NO<sub>3</sub>

The title compound,  $Rb_3CoCl_4NO_3$ , is isostructural with  $K_3ZnCl_4NO_3$ . It is built up from  $Rb^+$  cations,  $NO_3^-$  anions and  $[CoCl_4]^{2-}$  complex ions which form a layer-like arrangement: one layer contains only rubidium cations while the other contains a mixture of rubidium, nitrate and tetrachloro-cobaltate ions. Both rubidium cations are ninefold coord-inated by three O atoms and six Cl ions. One Rb atom, the Co atom, two Cl atoms, the N atom and one O atom lie on a crystallographic mirror plane.

Received 25 January 2005 Accepted 7 February 2005 Online 26 February 2005

# Comment

A survey of the literature indicated the existence of only a few compounds with the chemical formula  $A_3TX_4NO_3$  (A = alkali metal, T = divalent transition metal or Mg and X = halogen), viz. K<sub>3</sub>ZnCl<sub>4</sub>NO<sub>3</sub> (Carter & Zompa, 1999) and Cs<sub>3</sub>Tl<sub>4</sub>NO<sub>3</sub> (T = Co, Zn & Cd; Louer & Louer, 1986). In the course of our investigations of the H<sub>3</sub>PO<sub>4</sub>–RbNO<sub>3</sub>–CoCl<sub>2</sub> system, we have isolated single crystals of the title compound, Rb<sub>3</sub>CoCl<sub>4</sub>NO<sub>3</sub>, (I), which we describe here.

Compound (I) is isostructural with  $K_3ZnCl_4NO_3$ , both phases showing the same topology characterized by a double layer arrangement (Fig. 1). The two types of layers alternate parallel to (010): the first type, situated at y = ca 0.25, results from edge- and/or corner-sharing of [Rb1Cl<sub>6</sub>O<sub>3</sub>], [CoCl<sub>4</sub>] and [NO<sub>3</sub>] polyhedra; the second layer at y = 0 is built up from edge-sharing [Rb<sub>2</sub>Cl<sub>6</sub>O<sub>3</sub>] polyhedra. The two layers are linked by way of Rb–O–Rb and Rb–Cl–Rb bonds (Fig. 2).

Both rubidium cations in (I) are ninefold coordinated by six chloride ions and three O atoms from NO<sub>3</sub> anions. The Rb– Cl distances are in the range 3.2903 (8)–3.5827 (8) Å (average 3.3944 Å) for Rb1 (site symmetry *m*) and 3.4434 (6)– 3.6328 (6) Å for Rb2 (average 3.5036 Å). These average Rb– Cl distances are comparable to those found in RbCoCl<sub>3</sub> (3.5772 Å; Engberg & Soling, 1967) and Rb<sub>2</sub>CoCl<sub>4</sub> (3.4695 Å; Novikova & Tamazyan, 1998), but longer than the 3.29 Å ionic separation in RbCl (Wang, 1970). The average Rb–O distances in (I) are 2.9336 and 2.9427 Å for Rb1 and Rb2, respectively, which are smaller than the corresponding value of 3.198 Å in RbNO<sub>3</sub> (Shamsuzzoha & Lucas, 1987).

In (I) the Co<sup>2+</sup> cation (site symmetry *m*) forms a distorted tetrahedron, with a mean Co–Cl distance of 2.2707 Å, comparable to that for Co in a similar coordination in Rb<sub>2</sub>CoCl<sub>4</sub> (2.2387 Å). The angular distortion is, however, more pronounced in  $[CoCl_4]^{2-}$  anions than it is in SrZnCl<sub>4</sub>, where Zn possesses the same basic coordination geometry (Wickleder *et al.*, 1999). The  $[CoCl_4]$  tetrahedra are isolated in the structure of (I); the shortest distance between two neighbouring Co<sup>2+</sup> ions is more than 5.6 Å.

# **Experimental**

Dark blue crystals of (I) arose as a side-product from a solution containing RbNO<sub>3</sub> (1 mmol), CoCl<sub>2</sub>·6H<sub>2</sub>O (1 mmol) and H<sub>3</sub>PO<sub>4</sub> (1 mmol) rather than the desired mixed-metal phosphate. The crystals were filtered off and washed with a solution of 80% ethanol.

Mo  $K\alpha$  radiation Cell parameters from 16196

reflections  $\theta = 3.8-32.3^{\circ}$   $\mu = 14.78 \text{ mm}^{-1}$  T = 173 (2) KBlock, blue

 $\begin{array}{l} R_{\rm int} = 0.061 \\ \theta_{\rm max} = 30.0^{\circ} \\ h = -13 \rightarrow 13 \end{array}$ 

 $k = -14 \rightarrow 14$ 

 $l = -17 \rightarrow 17$ 

 $0.12 \times 0.11 \times 0.07 \text{ mm}$ 

1793 independent reflections

1596 reflections with  $I > 2\sigma(I)$ 

#### Crystal data

| Rb <sub>3</sub> CoCl <sub>4</sub> NO <sub>3</sub> |
|---------------------------------------------------|
| $M_r = 519.15$                                    |
| Orthorhombic, Pnma                                |
| a = 9.3183 (7)  Å                                 |
| b = 10.0730(9) Å                                  |
| c = 12.4423 (9)  Å                                |
| $V = 1167.87 (16) \text{ Å}^3$                    |
| Z = 4                                             |
| $D_x = 2.953 \text{ Mg m}^{-3}$                   |
|                                                   |

#### Data collection

| Stoe IPDS-II two-circle              |
|--------------------------------------|
| diffractometer                       |
| $\omega$ scans                       |
| Absorption correction: multi-scan    |
| (MULABS; Spek, 1990; Blessing,       |
| 1995)                                |
| $T_{\min} = 0.189, T_{\max} = 0.361$ |
| 18011 measured reflections           |

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.020$   $wR(F^2) = 0.043$  S = 1.021793 reflections 65 parameters  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0233P)^{2}]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.49 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.0031 (3)

| Table | 1 |
|-------|---|
|-------|---|

Selected bond lengths (Å).

| Di ta cai              | a (a)       | DIA GIAV               | aa         |
|------------------------|-------------|------------------------|------------|
| Rb1-O2 <sup>4</sup>    | 2.834 (2)   | Rb2-Cl2*               | 3.4434 (6) |
| Rb1-O1 <sup>ii</sup>   | 2.9835 (16) | Rb2-Cl2                | 3.4513 (6) |
| Rb1-O1                 | 2.9835 (17) | Rb2-Cl3 <sup>iii</sup> | 3.4681 (6) |
| Rb1-Cl1                | 3.2903 (8)  | Rb2-Cl1 <sup>iii</sup> | 3.5044 (6) |
| Rb1-Cl2 <sup>iii</sup> | 3.3163 (6)  | Rb2-Cl1 <sup>v</sup>   | 3.5221 (6) |
| Rb1-Cl2                | 3.4305 (6)  | Rb2-Cl3 <sup>vi</sup>  | 3.6328 (6) |
| Rb1-Cl3                | 3.5827 (8)  | Co1-Cl2                | 2.2583 (6) |
| Rb2-O1 <sup>iv</sup>   | 2.8679 (16) | Co1-Cl2 <sup>ii</sup>  | 2.2583 (6) |
| Rb2-O2                 | 2.9031 (12) | Co1-Cl3 <sup>vi</sup>  | 2.2825 (8) |
| Rb2-O1                 | 3.0572 (17) | Co1-Cl1 <sup>vii</sup> | 2.2837 (8) |
|                        |             |                        |            |

Symmetry codes: (i)  $\frac{1}{2} + x, y, \frac{1}{2} - z$ ; (ii)  $x, \frac{3}{2} - y, z$ ; (iii) 1 - x, 1 - y, 1 - z; (iv)  $x - \frac{1}{2}, y, \frac{1}{2} - z$ ; (v)  $\frac{1}{2} - x, 1 - y, z - \frac{1}{2}$ ; (vi) x - 1, y, z; (vii)  $x - \frac{1}{2}, y, \frac{3}{2} - z$ .

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

BEB is grateful to Dr M. Dusek (Institute of Physics, Praha, Czech Republic) for his kind collaboration.



#### Figure 1

Projection along [001] of the crystal structure of  $Rb_3CoCl_4NO_3$ . Polyhedron colours: green  $NO_3$  and blue  $CoCl_4$ .



## Figure 2

Coordination of Rb and Co in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i)  $\frac{1}{2} + x$ , y,  $\frac{1}{2} - z$ ; (ii) x,  $\frac{3}{2} - y$ , z; (iii) 1 - x, 1 - y, 1 - z; (iv) 1 - x,  $\frac{1}{2} + y$ , 1 - z; (vi)  $x - \frac{1}{2}$ , y,  $\frac{1}{2} - z$ ; (vii)  $\frac{1}{2} - x$ , 1 - y,  $z - \frac{1}{2}$ ; (viii) x - 1, y, z; (x)  $x - \frac{1}{2}$ , y,  $\frac{3}{2} - z$ .]

## References

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Brandenburg, K. (1999). *DIAMOND*. Version. 2.1c. Crystal Impact GbR, Bonn, Germany.
- Carter, R. L. & Zompa, L. J. (1999). Acta Cryst. C55, 6-8.
- Engberg, A. & Soling, H. (1967). Acta Chem. Scand. 21, 168-174.
- Louer, M. & Louer, D. (1986). J. Solid State Chem. 65, 272-276.
- Novikova, M. S. & Tamazyan, R. A. (1998). Kristallografiya, 43, 210-223.
- Shamsuzzoha, M. & Lucas, B. W. (1987). Acta Cryst. C43, 385–388.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.
- Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
- Wang, F. F. Y. (1970). Acta Cryst. A26, 377-379.
- Wickleder, C., Masselmann, S. & Meyer, G. (1999). Z. Anorg. Allg. Chem. 625, 507–510.