Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Rachid Ouarsal, ${ }^{\text {a }}$ Mohammed Lachkar, ${ }^{\text {a }}$ Michael Bolte ${ }^{\text {b }}$ and Brahim El Balia*
${ }^{\text {a }}$ Départment de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fés, Morocco, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, J.-W.-Goethe-Universität, Marie-Curie-Straße 11, D-60439 Frankfurt/Main, Germany

Correspondence e-mail: belbali@fsdmfes.ac.ma

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{N})=0.003 \AA$
R factor $=0.020$
$w R$ factor $=0.043$
Data-to-parameter ratio $=27.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Trirubidium cobalt tetrachloride nitrate(V), $\mathrm{Rb}_{3} \mathrm{CoCl}_{4} \mathrm{NO}_{3}$

The title compound, $\mathrm{Rb}_{3} \mathrm{CoCl}_{4} \mathrm{NO}_{3}$, is isostructural with $\mathrm{K}_{3} \mathrm{ZnCl}_{4} \mathrm{NO}_{3}$. It is built up from Rb^{+}cations, $\mathrm{NO}_{3}{ }^{-}$anions and $\left[\mathrm{CoCl}_{4}\right]^{2-}$ complex ions which form a layer-like arrangement: one layer contains only rubidium cations while the other contains a mixture of rubidium, nitrate and tetrachlorocobaltate ions. Both rubidium cations are ninefold coordinated by three O atoms and six Cl ions. One Rb atom, the Co atom, two Cl atoms, the N atom and one O atom lie on a crystallographic mirror plane.

Comment

A survey of the literature indicated the existence of only a few compounds with the chemical formula $A_{3} T X_{4} \mathrm{NO}_{3}(A=$ alkali metal, $T=$ divalent transition metal or Mg and $X=$ halogen), viz. $\mathrm{K}_{3} \mathrm{ZnCl}_{4} \mathrm{NO}_{3}$ (Carter \& Zompa, 1999) and $\mathrm{Cs}_{3} \mathrm{TI}_{4} \mathrm{NO}_{3}(T$ $=\mathrm{Co}, \mathrm{Zn} \& \mathrm{Cd}$; Louer \& Louer, 1986). In the course of our investigations of the $\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{RbNO}_{3}-\mathrm{CoCl}_{2}$ system, we have isolated single crystals of the title compound, $\mathrm{Rb}_{3} \mathrm{CoCl}_{4} \mathrm{NO}_{3}$, (I), which we describe here.

Compound (I) is isostructural with $\mathrm{K}_{3} \mathrm{ZnCl}_{4} \mathrm{NO}_{3}$, both phases showing the same topology characterized by a double layer arrangement (Fig. 1). The two types of layers alternate parallel to (010): the first type, situated at $y=c a 0.25$, results from edge- and/or corner-sharing of $\left[\mathrm{Rb} 1 \mathrm{Cl}_{6} \mathrm{O}_{3}\right],\left[\mathrm{CoCl}_{4}\right]$ and [NO_{3}] polyhedra; the second layer at $y=0$ is built up from edge-sharing $\left[\mathrm{Rb}_{2} \mathrm{Cl}_{6} \mathrm{O}_{3}\right]$ polyhedra. The two layers are linked by way of $\mathrm{Rb}-\mathrm{O}-\mathrm{Rb}$ and $\mathrm{Rb}-\mathrm{Cl}-\mathrm{Rb}$ bonds (Fig. 2).

Both rubidium cations in (I) are ninefold coordinated by six chloride ions and three O atoms from NO_{3} anions. The $\mathrm{Rb}-$ Cl distances are in the range 3.2903 (8) -3.5827 (8) \AA (average $3.3944 \AA$) for Rb1 (site symmetry m) and 3.4434 (6)3.6328 (6) \AA for Rb 2 (average $3.5036 \AA$). These average $\mathrm{Rb}-$ Cl distances are comparable to those found in RbCoCl_{3} ($3.5772 \AA$; Engberg \& Soling, 1967) and $\mathrm{Rb}_{2} \mathrm{CoCl}_{4}$ (3.4695 \AA; Novikova \& Tamazyan, 1998), but longer than the $3.29 \AA$ ionic separation in RbCl (Wang, 1970). The average $\mathrm{Rb}-\mathrm{O}$ distances in (I) are 2.9336 and $2.9427 \AA$ for Rb 1 and Rb 2 , respectively, which are smaller than the corresponding value of $3.198 \AA$ in RbNO_{3} (Shamsuzzoha \& Lucas, 1987).

In (I) the Co^{2+} cation (site symmetry m) forms a distorted tetrahedron, with a mean $\mathrm{Co}-\mathrm{Cl}$ distance of 2.2707 A , comparable to that for Co in a similar coordination in $\mathrm{Rb}_{2} \mathrm{CoCl}_{4}(2.2387 \AA)$. The angular distortion is, however, more pronounced in $\left[\mathrm{CoCl}_{4}\right]^{2-}$ anions than it is in SrZnCl_{4}, where Zn possesses the same basic coordination geometry (Wickleder et al., 1999). The $\left[\mathrm{CoCl}_{4}\right]$ tetrahedra are isolated in the structure of (I); the shortest distance between two neighbouring Co^{2+} ions is more than $5.6 \AA$.

Received 25 January 2005 Accepted 7 February 2005 Online 26 February 2005

Experimental

Dark blue crystals of (I) arose as a side-product from a solution containing $\mathrm{RbNO}_{3}(1 \mathrm{mmol}), \mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ $(1 \mathrm{mmol})$ rather than the desired mixed-metal phosphate. The crystals were filtered off and washed with a solution of 80% ethanol.

Crystal data

$\mathrm{Rb}_{3} \mathrm{CoCl}_{4} \mathrm{NO}_{3}$
$M_{r}=519.15$
Orthorhombic, Pnma
$a=9.3183$ (7) \AA 。
$b=10.0730(9) \AA$
$c=12.4423$ (9) \AA
$V=1167.87(16) \AA^{3}$
$Z=4$
$D_{x}=2.953 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan
(MULABS; Spek, 1990; Blessing, 1995)
$T_{\text {min }}=0.189, T_{\text {max }}=0.361$
18011 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.043$
$S=1.02$
1793 reflections
65 parameters

> Mo $K \alpha$ radiation
> Cell parameters from 16196
> \quad reflections
> $\theta=3.8-32.3^{\circ}$
> $\mu=14.78 \mathrm{~mm}^{-1}$
> $T=173(2) \mathrm{K}$
> Block, blue
> $0.12 \times 0.11 \times 0.07 \mathrm{~mm}$

1793 independent reflections 1596 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.061$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-17 \rightarrow 17$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0233 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.49 \mathrm{e}^{-3} \\
& \text { Extinction correction: } \text { SHELXL97 } \\
& \text { Extinction coefficient: } 0.0031(3)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{Rb} 1-\mathrm{O}^{\mathrm{i}}$	$2.834(2)$	$\mathrm{Rb} 2-\mathrm{Cl}^{\mathrm{v}}$	$3.4434(6)$
$\mathrm{Rb} 1-\mathrm{O} 1^{\text {ii }}$	$2.9835(16)$	$\mathrm{Rb} 2-\mathrm{Cl} 2$	$3.4513(6)$
$\mathrm{Rb} 1-\mathrm{O} 1$	$2.9835(17)$	$\mathrm{Rb} 2-\mathrm{Cl}^{\text {iii }}$	$3.4681(6)$
$\mathrm{Rb} 1-\mathrm{Cl} 1$	$3.2903(8)$	$\mathrm{Rb} 2-\mathrm{Cl}^{\text {iii }}$	$3.5044(6)$
$\mathrm{Rb} 1-\mathrm{Cl} 2^{\text {iii }}$	$3.3163(6)$	$\mathrm{Rb} 2-\mathrm{Cl}^{\mathrm{v}}$	$3.5221(6)$
$\mathrm{Rb} 1-\mathrm{Cl} 2$	$3.4305(6)$	$\mathrm{Rb} 2-\mathrm{Cl}^{\text {vi }}$	$3.6328(6)$
$\mathrm{Rb} 1-\mathrm{Cl} 3$	$3.5827(8)$	$\mathrm{Co} 1-\mathrm{Cl} 2$	$2.2583(6)$
$\mathrm{Rb} 2-\mathrm{O} 1^{\text {iv }}$	$2.8679(16)$	$\mathrm{Co} 1-\mathrm{Cl}^{\text {ii }}$	$2.2583(6)$
$\mathrm{Rb} 2-\mathrm{O} 2$	$2.9031(12)$	$\mathrm{Co} 1-\mathrm{Cl}^{\text {vi }}$	$2.2825(8)$
$\mathrm{Rb} 2-\mathrm{O} 1$	$3.0572(17)$	$\mathrm{Co} 1-\mathrm{Cl1}^{\text {vii }}$	$2.2837(8)$

Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (ii) $x, \frac{3}{2}-y, z$; (iii) $1-x, 1-y, 1-z$; (iv) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (v) $\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (vi) $x-1, y, z$; (vii) $x-\frac{1}{2}, y, \frac{3}{2}-z$.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

BEB is grateful to Dr M. Dusek (Institute of Physics, Praha, Czech Republic) for his kind collaboration.

Figure 1
Projection along [001] of the crystal structure of $\mathrm{Rb}_{3} \mathrm{CoCl}_{4} \mathrm{NO}_{3}$. Polyhedron colours: green NO_{3} and blue CoCl_{4}.

Coordination of Rb and Co in (I). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2}+x, y, \frac{1}{2}-z$; (ii) $x, \frac{3}{2}-y$, z; (iii) $1-x, 1-y, 1-z$; (iv) $1-x, \frac{1}{2}+y, 1-z$; (vi) $x-\frac{1}{2}, y, \frac{1}{2}-z$; (vii)
$\frac{1}{2}-x, 1-y, z-\frac{1}{2}$; (viii) $x-1, y, z$; (x) $x-\frac{1}{2}, y, \frac{3}{2}-z$.]

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Brandenburg, K. (1999). DIAMOND. Version. 2.1c. Crystal Impact GbR, Bonn, Germany.
Carter, R. L. \& Zompa, L. J. (1999). Acta Cryst. C55, 6-8.
Engberg, A. \& Soling, H. (1967). Acta Chem. Scand. 21, 168-174.
Louer, M. \& Louer, D. (1986). J. Solid State Chem. 65, 272-276.
Novikova, M. S. \& Tamazyan, R. A. (1998). Kristallografiya, 43, 210-223.
Shamsuzzoha, M. \& Lucas, B. W. (1987). Acta Cryst. C43, 385-388.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Wang, F. F. Y. (1970). Acta Cryst. A26, 377-379.
Wickleder, C., Masselmann, S. \& Meyer, G. (1999). Z. Anorg. Allg. Chem. 625, 507-510.

